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Abstract
Background: Large- scale neuronal network breakdown underlies memory impairment in Alzheimer’s 
disease (AD). However, the differential trajectories of the relationships between network organi-
sation and memory across pathology and cognitive stages in AD remain elusive. We determined 
whether and how the influences of individual- level structural and metabolic covariance network 
integrity on memory varied with amyloid pathology across clinical stages without assuming a 
constant relationship.
Methods: Seven hundred and eight participants from the Alzheimer’s Disease Neuroimaging 
Initiative were studied. Individual- level structural and metabolic covariance scores in higher- level 
cognitive and hippocampal networks were derived from magnetic resonance imaging and [18F] 
fluorodeoxyglucose positron emission tomography using seed- based partial least square analyses. 
The non- linear associations between network scores and memory across cognitive stages in each 
pathology group were examined using sparse varying coefficient modelling.
Results: We showed that the associations of memory with structural and metabolic networks in the 
hippocampal and default mode regions exhibited pathology- dependent differential trajectories 
across cognitive stages using sparse varying coefficient modelling. In amyloid pathology group, 
there was an early influence of hippocampal structural network deterioration on memory impair-
ment in the preclinical stage, and a biphasic influence of the angular gyrus- seeded default mode 
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metabolic network on memory in both preclinical and dementia stages. In non- amyloid pathology 
groups, in contrast, the trajectory of the hippocampus- memory association was opposite and weaker 
overall, while no metabolism covariance networks were related to memory. Key findings were repli-
cated in a larger cohort of 1280 participants.
Conclusions: Our findings highlight potential windows of early intervention targeting network break-
down at the preclinical AD stage.
Funding: Data collection and sharing for this project was funded by the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD 
ADNI (Department of Defense award number W81XWH- 12- 2- 0012). We also acknowledge the 
funding support from the Duke NUS/Khoo Bridge Funding Award (KBrFA/2019- 0020) and NMRC 
Open Fund Large Collaborative Grant (OFLCG09May0035), NMRC New Investigator Grant (MOH- 
CNIG18may- 0003) and Yong Loo Lin School of Medicine Research funding.

Editor's evaluation
This paper presents important information about how potential network- based structural and meta-
bolic imaging biomarkers are associated with memory performance during distinct disease stages, in 
line with previous hypothetical biomarker models. The study is conceptually sound and methodolog-
ically convincing and will be of interest to neuroscientists and medical professionals involved in the 
study of Alzheimer's disease and related neurodegenerative conditions.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterised by neuropathological 
accumulation of amyloid- beta (Aβ) plaques (A), intraneuronal tau neurofibrillary tangles (T), and neuro-
degeneration (N) in the brain (Braak and Braak, 1991; Serrano- Pozo et  al., 2011). While AD is 
traditionally a clinical- pathologic condition, the emerging development of biomarkers to profile AD 
pathophysiology has led to the proposal of AD as a biological construct based on the AT(N) system 
(Jack et  al., 2016; Jack et  al., 2018). The incorporation of the AT(N) classification into the clin-
ical continuum will offer robust disease staging by combining both pathophysiological and cognitive 
phenotypes which span from cognitively intact to mild cognitive impairment (MCI) before progressing 
to the dementia stage (Knopman et al., 2018). Studies have suggested that Aβ is the first to become 
abnormal in AD, followed by downstream pathophysiological changes of tauopathy, neurodegenera-
tion, and cognitive impairment (Bateman et al., 2012; Jack et al., 2013a; Bertens et al., 2015). While 
neurodegeneration is widely associated with worse cognitive impairment in neurocognitive disorders, 
it remains unknown whether the influence of neurodegeneration on cognitive function varies with AD 
biomarkers status and across the AD continuum.

Neurodegeneration represents neuronal injury in the forms of cerebral grey matter (GM) atrophy 
and hypometabolism. In AD, it is widely postulated that Aβ triggers tau- mediated toxicity leading to 
AD- type neurodegeneration in brain regions such as the hippocampus, the precuneus and posterior 
cingulate cortex (PCC), bilateral angular gyrus (ANG), and medial temporal lobes (Chételat et al., 
2008; Misra et al., 2009; Mosconi et al., 2009; Kljajevic et al., 2014). Recently, amyloid and tau 
pathologies are also shown to have a synergistic effect on AD- type hypometabolism, involving the 
basal and mesial temporal, orbitofrontal, and anterior and posterior cingulate cortices (Hanseeuw 
et al., 2017; Pascoal et al., 2017). However, neurodegeneration may also occur prior to incident 
amyloid positivity (Jack et al., 2013b) and be influenced by the loss of microtubule stabilising function 
and toxic effects of tau pathology, independent of amyloid pathology (Ballatore et al., 2007).

Advancement in brain network analysis offers insights into the functional effects of AD pathophys-
iology on cognitive changes. Work from our group has demonstrated that AD pathophysiologies 
compromise brain structure and function systematically by capitalising on the intrinsic connectivi-
ties among brain regions (Zhou et al., 2012). Accumulating evidence suggests that AD pathological 
deposition around neurons which impairs synaptic communication, leads to specific large- scale brain 
intrinsic network disorganisation (Seeley et al., 2009; Marchitelli et al., 2018). Decreased functional 
connectivity in the default mode network (DMN) derived from resting state functional MRI is well- 
described in MCI and AD (Greicius et al., 2004; Zhou et al., 2010; Chong et al., 2017; Chong et al., 
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2019; Zhou et al., 2017), while aberrant loss of functional connectivity in other higher- order cognitive 
networks such as the executive control network (ECN) and salience network (SN) are being increas-
ingly reported (Chong et al., 2017; Brier et al., 2012; He et al., 2014).

Brain networks can also be constructed based on similarity in GM structure and metabolism 
between brain areas across individuals, known as the GM structural and metabolic covariance network, 
respectively (Ripp et al., 2020; Zielinski et al., 2010; Montembeault et al., 2012). Both structural 
and metabolic covariance networks show convergent patterns with the intrinsic connectivity network 
in healthy individuals and mirror GM atrophy patterns in distinct neurodegenerative disorders (Seeley 
et al., 2009; Ripp et al., 2020; Lizarraga et al., 2021). Using this approach, a recent study revealed 
differential patterns of structural covariance networks within different amyloid pathology groups 
classified by cerebrospinal fluid (CSF) Aβ1–42 and P- tau181 levels (Li et al., 2019). However, existing 
studies on the GM structural and metabolic covariance networks were largely reliant on group- level 
correlation maps of cortical morphology and metabolism, which cannot be used to infer individual 
differences in cognition. It is postulated that network analysis at the individual level will allow direct 
evaluation of each individual’s structural and metabolic covariance networks, hence providing deeper 
understanding on the effects of brain networks on cognitive performances (Kim et al., 2016). For 
instance, a cube- based correlation approach to calculate the individual GM networks by computing 
intracortical similarities in GM morphology (Tijms et al., 2012) showed that single- subject GM graph 
properties were associated with individual differences of clinical progression in AD (Tijms et al., 2018; 
Tijms et  al., 2014; Vermunt et  al., 2020; Tijms et  al., 2013). A network template perturbation 
approach was also introduced to construct an individual differential SCN using regional GM volume, 
though it required reference models derived from a group of normal control subjects (Liu et  al., 
2021). Nevertheless, the relationships between changes in individual- level network- based neurode-
generation across different amyloid pathology groups and cognitive stages, and their influence on 
memory impairment, remain unclear.

The influence of cerebral GM loss and [18F] fluorodeoxyglucose (FDG) hypometabolism on cogni-
tive function in AD has often been modelled as a linear relationship (Habeck et al., 2012; Bejanin 
et al., 2017). However, emerging evidence suggests that structural and metabolic abnormalities in AD 
may follow a sigmoidal curve trajectory with an initial period of acceleration and subsequent decel-
eration (Jack et al., 2013a; Sabuncu et al., 2011; Schuff et al., 2012). While the dynamic effects of 
AD biomarkers on worsening cognition can be better modelled by sigmoid- shaped curves rather than 
a constant across disease stages (Caroli et al., 2010), it remains largely unknown how brain struc-
tural and metabolic networks will influence cognition decline differentially in individuals stratified into 
different pathology groups and cognitive stages. Once these trajectories are defined across the AD 
continuum and subgroups, they can potentially highlight windows of opportunity for targeted inter-
vention at the appropriate cognitive stages to improve disease outcomes.

To cover these gaps, we sought to determine the differential associations of brain metabolism 
and GM structural networks with memory function using a neurodegeneration covariance network 
approach, among cognitively normal (CN), MCI, and probable AD individuals stratified by their A and 
T biomarker status. We used the seed partial least squares (PLS) method (Krishnan et al., 2011) to 
evaluate the individual- level brain network integrity. We employed the sparse varying coefficient (SVC) 
model which does not assume a constant relationship between brain measures and cognitive perfor-
mance over different cognitive stages (Hong et al., 2015; Daye et al., 2012; Ji et al., 2019). Besides 
capturing the possible non- linear brain- cognition relationship, SVC also allows the selection of signif-
icant predictors with the least absolute shrinkage and selection operator (LASSO) sparse penalty 
while eliminating the contribution of the less important predictors. We hypothesised that individual- 
level brain metabolic and structural network integrity would be non- linearly associated with memory 
performance across the AD continuum and such trajectories would vary depending on the presence of 
amyloid and tau protein deposition. Based on our previous findings (Zhou et al., 2010; Chong et al., 
2017; Zhang et al., 2020), we further hypothesised that the posterior DMN and the medial temporal 
lobe regions would play an early and dominant role affecting the memory performance in individuals 
with amyloid pathology.

Our study provides first evidence that both hippocampal structural and ANG metabolic network 
integrity contributed to memory performance in the early cognitively normal stage in individuals 
with amyloid deposition. However, in the amyloid positive individuals with dementia, only the ANG 
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metabolic network dominated the memory- network association. Amyloid negative individuals did not 
have such patterns. These findings characterise the dynamic influence of brain structural and meta-
bolic networks on memory function across the AD continuum and underscore the importance of early 
intervention targeting neuronal dysfunction in the preclinical AD stage to improve memory outcomes.

Results
Group differences in brain metabolic and structural covariance 
networks
We selected 812 participants (232 CN, 413 MCI, and 167 probable AD) from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database with 3T T1- weighted MRI and [18F]FDG PET scans to define 
seed regions for brain network derivation (Figure 1, step 1 and Figure 1—figure supplement 1). As 
our study focused on memory and AD pathology, we chose to study the individual- level structural 
and metabolic covariance within higher- order cognitive networks such as DMN, SN, ECN as well as 
the hippocampus (HIP)- based memory network (Veldsman et al., 2020; Vincent et al., 2008). We 
defined a set of 12 seed regions to derive these covariance networks on the basis that they have been 
shown to reliably produce the relevant network across imaging modalities. Specifically, the DMN 
included bilateral ANG, PCC, and medial prefrontal cortex (mPFC); the SN included bilateral anterior 
insular (INS); the ECN included bilateral dorsolateral prefrontal cortex (DLPFC) and posterior parietal 

Figure 1. Study design schematic. Seven hundred and eight participants with either healthy cognition (CN), mild cognitive impairment (MCI) or 
dementia were studied. Twelve brain seeds covering the key regions of hippocampus, the default mode network, the executive control network, 
and salience network were defined based on hypometabolism (via FDG) and grey matter atrophy (via MRI) patterns in all patients with probable AD 
compared to CN (step 1). Using seed- based partial least square (PLS) analysis (step 2), the covariance patterns in metabolism and grey matter volume 
maps were identified and used to derive the individual- level brain metabolic network scores and structural network scores for each seed. The group 
difference was evaluated between different cognitive stages and pathology groups (step 3). We then investigated the differential stage- dependent 
associations between these key brain network scores with memory performance in each of the three pathology groups (A- T-, A- T+, and A+T-/A+T + ) 
separately using sparse varying coefficient (SVC) modelling (step 4). Abbreviations: A=Aβ; T=tau; ‘-’ = negative; ‘+’ = positive.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Flowchart of participant pool selection.

Figure supplement 2. Subject ordering for SVC modelling within each pathology group.

https://doi.org/10.7554/eLife.77745
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cortex (PPC); the memory network included bilateral HIP. The seed coordinates were determined 
based on the group comparisons of the grey matter volume (GMV) probability and glucose metabolic 
spatial maps between CN and probable AD individuals (Supplementary file 1 and Supplementary 
file 4, see details in Methods).

To derive brain structural and metabolic networks from individuals with and without amyloid 
pathology, we further identified 708 out of the existing 812 participants who underwent neuropsy-
chological assessments, and lumbar puncture, in addition to [18F]FDG PET and T1- weighted MRI scans 
to form the main dataset (Table 1). Using seed PLS (Figure 1, step 2, see details in Methods), we 
identified the structural and metabolic covariance network patterns associated with each seed at 
the group- level (Figure 2A and Figure 3A). We projected the original individual GMV and metabolic 
maps onto the covariance network maps to derive the individual brain structural or metabolic network 
scores, which reflected how strongly each brain network pattern was manifested in the individual’s 
metabolic and structural brain networks.

First, we compared the brain metabolic and structural network scores between different pathology 
groups and cognitive stages (Figure 1, step 3). In participants with amyloid pathology (A+T-/A+T + 
), the probable AD group had lower metabolic and structural network scores than the CN and MCI 
groups in all the networks (Figure 2B right and 3B right). No such difference was observed in partici-
pants without amyloid pathology.

At the same cognitive stage, we observed slightly different patterns in structural and metabolic 
networks. Specifically, at the same cognitive stage, amyloid positive (A+T-/A+T + ) MCI individuals 
had lower metabolic and structural network scores than the MCI individuals without amyloid and tau 
pathology (A- T-) for all the networks (Figures 2B and 3B). The amyloid positive CN individuals had 
comparable structural network scores but lower metabolic network scores than the CN individuals 
without amyloid and tau pathology. In contrast, CN individuals with amyloid pathology (A+T-/A+T + ) 
showed lower structural integrity in the HIP- based memory network, the mPFC- based anterior DMN 
and the INS- based SN than the CN individuals with tau pathology only (A- T+). In addition, CN indi-
viduals with tau pathology (A- T+) had lower structural mPFC- based anterior DMN scores than the CN 
group without tau and amyloid pathology (A- T-).

Divergent stage-dependent trajectories of the association between 
hippocampal structural network integrity and memory performance in 
the three pathology groups
Next, we sought to determine the differential non- linear trajectories of the association between brain 
network integrity and memory impairment in different pathology groups across the three cognitive 
stages using the SVC model (Figure 1, step 4; Hong et al., 2015). Note that we did not assume 
a constant relationship here; instead, the network- memory association could vary across cognitive 
stages. Instead of analysing each brain measure in separate models, the SVC analysis allows all vari-
ables to be entered as predictors in the same multivariate model, with the identification of the most 
important predictors and the elimination of the less important predictors (i.e. feature selection) imple-
mented by minimising the penalised least squares function.

To characterise the possible stage- dependent trajectories using SVC modelling, we ordered the 
participants by their cognitive stages (i.e. CN → MCI → dementia; Figure  1—figure supplement 
2A) in each of the three pathology groups (A-/T-, A-/T+and A+T-/A+T + ). Within each stage, the 
participants were then ordered by their global cognition or dementia severity (i.e. no impairment → 
severe impairment). Specifically, the participants within the CN group were ordered by decreasing 
MMSE scores, while the participants within the MCI and dementia groups were ordered by increasing 
CDR- sum of boxes (SOB) scores. Participants with the same MMSE or CDR- SOB scores were further 
ordered by increasing age (i.e. young → old). Ordered participants were distributed evenly into bins 
(i.e. 10 subjects/bin). In our SVC models, the dependent variable was the ADNI memory composite 
score. Predictors included all the 14 FDG/GMV regional network scores with gender, education years, 
APOE ε4, intracranial volume (ICV), and scanning site as nuisance variables. We performed the SVC 
modelling for each pathology group separately to find the key predictors and the trajectories of their 
associations with memory along the disease progression (see details in Methods).

The SVC models identified the HIP- based structural memory network score as a key predictor of 
memory impairment in all three pathology groups (Figures 4A and 5A). We found that the lower HIP 
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structural network scores, the lower the ADNI- mem scores (indicated by positive beta coefficient). The 
strength of this association was higher (i.e. higher beta coefficient) in the amyloid pathology group 
than the other two A- groups.

More importantly, not only was the relationship between the HIP structural network and memory 
performance non- linearly dependent on cognitive stages as hypothesised, but such non- linear trajec-
tories were also different across the three pathology groups (Figures 4A and 5A). Specifically, in 

Figure 2. The integrity of brain metabolic networks in participants with and without amyloid pathology across cognitive stages. (A) Brain slices of 
metabolic covariance networks associated with each brain seed. Brain metabolic network resemabled canonical brain networks. The intensity of 
colorbar represents bootstrap ratios, derived from dividing the weight of the singular- vector by the bootstrapped standard error. (B) Individual- level 
brain metabolic network scores (z- score) were lower in individuals with worse cognition and amyloid pathology. Z- scores were calculated within all the 
subjects. Summary of individual- level metabolic network scores (mean and median) were presented in half- violin plots. ‘*’ indicates significant group 
difference (p<0.05). Thick lines indicate group differences in brain scores of all the seven networks between different cognitive stages (grey dashed 
lines) or pathology groups (dark lines). Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media 
prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI = mild cognitive 
impairment; pAD = probable AD; A = β-amyloid; T=tau; ‘+’=positive; ‘-’=negative.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The integrity of brain metabolic networks in participants with and without amyloid pathology across cognitive stages (validation 
dataset 1).

https://doi.org/10.7554/eLife.77745
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the amyloid pathology group, the strength of this association was highest in early CN stage, and 
decreased from late CN to early MCI stage (Figure 4A, left). The strength of this association remained 
stable in MCI and then decreased in the dementia stage.

The two amyloid negative groups had the opposite pattern of the amyloid positive group 
(Figure 5A). Specifically, in the A- T- group, the strength of the association between the HIP structural 

Figure 3. The integrity of brain structural networks in participants with and without amyloid pathology across cognitive stages. (A) Brain slices of 
structural covariance networks associated with each brain seed. The intensity of colorbar represents bootstrap ratios, derived from dividing the weight 
of the singular- vector by the bootstrapped standard error. (B) Individual- level brain structural network scores (z- score) were lower in individuals with 
worse cognition and amyloid pathology. Z- scores were calculated within all the subjects. Summary of individual- level structural network scores (mean 
and median) were presented in half- violin plots. ‘*’ indicates significant group difference (p<0.05). Thick lines indicate group differences in brain 
scores of all the networks between different cognitive stages (grey dashed lines) or pathology groups (dark lines). Thin lines indicate group differences 
in brain scores of specific networks. Abbreviations: HIP = hippocampus; ANG = angular gyrus; PCC = posterior cingulate cortex; mPFC = media 
prefrontal cortex; INS = insular; DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; CN = cognitively normal; MCI = mild cognitive 
impairment; pAD = probable AD; A = β-amyloid; T=tau; ‘+’ = positive; ‘-’ = negative.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The integrity of brain structural networks in participants with and without amyloid pathology across cognitive stages (validation 
dataset 1).

https://doi.org/10.7554/eLife.77745
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Figure 4. Brain metabolic and structural networks had differential stage- dependent associations with memory in amyloid positive individuals. Data 
from the main dataset (panel A) and validation dataset 1 (panel B) exhibited consistent stage- dependent memory- network association trajectory from 
cognitively normal to dementia stage in participants with amyloid pathology (i.e. A+T-/A+T + group). Both hippocampal- seeded structural network (left, 
in blue) and angular gyrus- seeded default mode metabolic network (right, in red) integrity contributed significantly to memory performance in early 
cognitively normal stage. Such impact decreased in MCI stage for both metabolic and structural networks. In contrast, only the metabolic network had a 
major influence on memory in late dementia stage. Solid curves represent the mean associations (beta coefficients) of brain network scores with memory 
as a function of advancing AD continuum estimated from 100 replicates. The dashed curves represent the point- wise 2* standard errors of the solid 

Figure 4 continued on next page
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network and memory performance was lowest in early CN stage and increased in the late CN stage. 
It then remained stable in the MCI stage before a further increase in the dementia stage. Similarly, in 
the A- T +group, the strength of such association was low in the CN stage and gradually increased in 
the MCI stage, reaching the highest in the late MCI and dementia stage.

Our findings suggest that the influence of the HIP- based structural network integrity on memory 
performance begins early in the preclinical AD stage and the strength of this influence gradually 
decreased as the cognitive stages progress. On the other hand, the influence of the HIP network 
integrity on memory is weaker in individuals without Aβ pathology and peaks in the dementia stage. 
The stronger hippocampus- memory association in the preclinical AD stage supports the current 
strategy of early intervention to attain better cognitive outcomes.

Furthermore, demographical and genetic variables such as gender, education years and APOE 
ε4 genotype showed differential stage- and pathology- dependent associations with memory perfor-
mance (Figure 5—figure supplement 2). Females and fewer years of education were associated with 
memory impairment in A-/T- and A-/T+groups respectively. These associations were highest in the 
early CN stage and gradually decreased in late CN stage before increasing in the late MCI and prob-
able AD stages. In contrast, females, fewer years of education and APOE ε4 carriers in the amyloid 
pathology group were associated with memory impairment with a differential trajectory (i.e. highest 
in the early CN stage and gradually decreased afterwards), although the strength of this association 
was relatively lower overall compared to those in the A-/T- and A-/T+groups.

Stage-dependent association between angular gyrus metabolic 
network integrity and memory performance in amyloid pathology 
group
The SVC models identified the ANG- based metabolic network score (i.e. DMN) to be associated with 
memory impairment only in the amyloid pathology group (Figure 4A, right). We found that the lower 
the ANG metabolic network score, the lower the ADNI- mem score. This suggested that a breakdown 
in the ANG- based metabolic covariance network was related to worse memory performance in the 
amyloid pathology group only. A non- linear relationship was also observed between the ANG meta-
bolic covariance network and memory performance across different cognitive stages. The strength of 
this relationship showed an early peak in early CN and gradually decreased in the late CN and MCI 
stages, before increasing in late MCI/dementia stage again.

Our findings are in line with the current literature which show that decreased glucose uptake in the 
ANG is associated with worse cognitive performance in the later stages of AD. In addition, we extend 
this field by demonstrating the early influence of the ANG- based metabolic covariance network 
(mirroring the DMN) for memory performance in the preclinical AD stage. This suggests that early 
metabolic dysfunction of the ANG and the extended DMN may predispose individuals with preclinical 
AD to be more vulnerable to memory impairment.

Replication in the validation datasets
To test if the above findings from the main dataset can be replicated, we repeated the same analyses 
using a larger validation dataset (here after refer as validation dataset 1). We added an additional 
468 individuals who underwent 1.5T T1- weighted MRI scans and [18F]FDG PET. With the original main 
dataset of 812 participants, we had 1280 participants in total for brain seed definition (Figure  1, 
step 1). Out of 1280 participants, 859 participants had the same neuropsychological assessments, 

curves estimated from 100 replicates. The participants were ordered by their cognitive stages (i.e. CN → MCI → probable AD). Within each cognitive 
stage, the participants were then ordered by general cognition (MMSE for CN) or dementia severity (CDR for MCI and dementia) (i.e. no impairment 
→ severe impairment). Participants with the same level of impairment/severity were further ordered by increasing age (i.e. young → old). Ordered 
participants were distributed evenly into bins (i.e. 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; HIP = 
hippocampus; ANG = angular gyrus.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Differential stage- dependent associations of metabolic and structural network scores with memory impairment in amyloid 
positive individuals (validation analyses).

Figure 4 continued

https://doi.org/10.7554/eLife.77745
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Figure 5. Stage- dependent association of brain hippocampal structural network with memory performance in A- T- and A- T +pathology groups. Data 
from the main dataset (panel A) and validation dataset 1 (panel B) exhibited consistent stage- dependent memory- network association trajectory from 
cognitively normal stage to dementia stage in participants with A- T- and A- T +pathology. The hippocampus- memory association was much weaker 
overall in non- amyloid/non- tau and tau only groups compared to amyloid positive group (Figure 4). The memory- network association was the lowest 
in early cognitively normal stage and gradually increased with clinical progression in both groups, while the tau only group had stronger associations 
in dementia stage. Solid curves represent the mean associations (beta coefficients) of brain network scores with memory as a function of advancing 
AD continuum estimated from 100 replicates. The dashed curves represent the point- wise 2* standard errors of the solid curves estimated from 100 
replicates. The participants were ordered by their cognitive stages (i.e. CN → MCI → probable AD). Within each cognitive stage, the participants 
were then ordered by general cognition (MMSE for CN) or dementia severity (CDR for MCI and dementia) (i.e. no impairment → severe impairment). 

Figure 5 continued on next page
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lumbar puncture for the following analyses (Figure 1, steps 2 and 3, Supplementary file 2). The field 
strength (i.e. 1.5 T or 3 T) was further included as an additional nuisance variable for analyses on the 
validation dataset 1. We performed the same PLS- SVC analyses on validation dataset 1 and replicated 
most of our key findings (Figures 4B and 5B, Figure 2—figure supplement 1, Figure 3—figure 
supplement 1 and Figure 5—figure supplement 3). Specifically, the HIP- based structural memory 
network and the ANG- based metabolic DMN scores were associated with memory impairment in the 
respective pathology groups with similar beta curves as the main dataset. Furthermore, these obser-
vations remained robust when the analyses were performed using the alternative ordering strategy 
of merging both MCI and dementia stages (Figure 4—figure supplement 1C & Figure 5—figure 
supplement 1B). Moreover, we also repeated the same analyses using only the 468 independent 
individuals (here after refer as validation dataset 2; Figure 1—figure supplement 1). Due to the small 
sample sizes of the A- T- and A- T +groups, we only performed the SVC modelling on the A+T-/A+T 
+ group, which revealed consistent findings (i.e. predictors and stage- dependent trajectories) as the 
main dataset (Supplementary file 1, Supplementary file 3 and Supplementary file 4; Figure 4—
figure supplement 1A).

To test whether the results were sensitised to the relative imbalance of group sizes across diag-
noses, we repeated the same analyses in the validation dataset 1 by performing PLS on the CN group 
only to generate the group- level brain salience maps in a healthy cohort. The individual brain glucose 
metabolic and grey matter probably spatial maps were then projected onto these CN- derived salience 
maps to generate the individual brain network scores. The subsequent SVC modelling replicated most 
of our key findings from the main dataset (Figure 4—figure supplement 1B and Figure 5—figure 
supplement 1A).

High specificity of the SVC model
Last, we evaluated the specificity of the established SVC models using permutation tests. For each 
null SVC model using the permuted datasets, the frequency distributions of variable selection (i.e. 
the total times of selection as the key predictor of memory scores within the 100 permuted datasets) 
appeared random (Figure 5—figure supplement 4). As the selected variables in our main findings 
were not favoured over the other variables in the null models, this indicated the high specificity of the 
SVC models that were built on the original dataset. To further evaluate the specificity and robustness 
of the SVC models, we replaced LASSO with Ridge as the penalty in the SVC modelling. All results 
obtained on the main dataset with either LASSO or Ridge as the penalty in the SVC modelling were 
consistent (Figure 4—figure supplement 1D & Figure 5—figure supplement 1C).

Discussion
This study revealed differential associations of brain structural and glucose metabolism covariance 
networks with memory performance across the cognitive stages of CN, MCI, and probable AD in 
individuals stratified by Aβ and tau pathologies. Rather than assuming a constant brain- memory 
association, we demonstrated that brain structural and metabolic network integrity had non- linear 
associations with memory performance across different cognitive stages; such trajectories exhibited 
opposing patterns in individuals with and without amyloid pathology. A lower HIP structural network 

Participants with the same level of impairment/severity were further ordered by increasing age (i.e. young → old). Ordered participants were distributed 
evenly into bins (i.e. 10 subjects/bin). Abbreviations: CN = cognitively normal; MCI = mild cognitive impairment; HIP = hippocampus.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Differential stage- dependent associations of metabolic and structural network scores with memory impairment in A- T- and A- 
T +pathology groups (validation analyses).

Figure supplement 2. Differential stage- dependent associations of demographic variables with memory impairment in different pathology groups 
(main dataset).

Figure supplement 3. Differential stage- dependent associations of demographical variables with memory impairment in different pathology group 
(validation dataset 1).

Figure supplement 4. Variable selection frequency distribution for permuted datasets using sparse varying- coefficient (SVC) model.

Figure 5 continued
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score was associated with a lower ADNI- mem score and among individuals with amyloid pathology, 
the strength of this relationship was greatest in early CN and decreased in subsequent cognitive 
stages. In contrast, the strength of this association was lower and the trajectory was opposite in those 
with both tau- only and non- amyloid/non- tau pathology. An association between the breakdown of 
the default mode metabolic network seeded at the ANG with memory deficit was also observed 
in individuals with amyloid pathology, with the strength of this association peaking in early CN and 
decreasing gradually before rebounding in the late MCI/dementia stage. Our findings support the AD 
biomarker hypothetical models by characterising the non- linear influence of brain structural and meta-
bolic networks on memory function across the AD continuum, hence paving the way for early inter-
ventions and stage- dependent remedies to modify disease trajectory and improve clinical outcomes.

Early influence of hippocampal structural network deterioration on 
memory impairment in asymptomatic amyloid-positive individuals
The HIP structural network is identified to be associated with memory impairment in all three 
pathology groups which is consistent with the role that the hippocampus plays in memory cognitive 
domain (Tulving and Markowitsch, 1998; Eichenbaum, 2004). However, the peak influence of the 
HIP structural integrity on memory differed among the three pathology groups. The early peak of 
the association at the CN stage in the amyloid pathology group suggests an early influence of the 
hippocampal structural network integrity on memory performance in the preclinical AD stage. Our 
findings are in line with a recent study that compared MRI brain structure models of normal and AD 
participants across the entire lifespan, showing that the AD model for hippocampus diverged early 
from normal aging trajectory (Coupé et al., 2019). Accumulating evidence also suggests hippocampal 
volume and thickness as early imaging correlates of verbal memory in preclinical AD (Bayram et al., 
2018). Furthermore, in a cohort of CN individuals, decreased CSF Aβ42 was associated with hippo-
campal loss and poorer performance on episodic memory (Wang et al., 2015), while an early effect 
of Aβ on memory mediated by hippocampal atrophy has been demonstrated in non- demented older 
individuals (Mormino et al., 2009; Lim et al., 2015; Mattsson et al., 2015). These evidence supports 
our findings of the early influence of structural covariance breakdown in the hippocampal networks on 
memory performance in the preclinical AD stage.

In our cohort with amyloid pathology, the strength of the association between HIP structural 
network and memory gradually decreased in the MCI and dementia stages. This suggests that the 
HIP structural network integrity plays a lesser role on memory performance as the cognitive stages 
progress. Given that memory impairment is expected to worsen as the cognitive stage progresses, 
we postulate that structural networks outside the hippocampal/temporal lobes may be increasingly 
affected while the influence from the hippocampal- based memory network decreases. Indeed, the 
hippocampus system is well connected to various cortical brain regions in processing memory infor-
mation (Treves and Rolls, 1994) and together with brain structures such as the prefrontal cortex 
make up a large- scale network to support encoding and retrieval of episodic memory (Blumenfeld 
and Ranganath, 2007). While the medial temporal lobe is well known to be affected early on in 
the AD process, grey matter regions outside the medial temporal lobes are gradually implicated as 
the disease progresses to MCI and dementia (Bayram et al., 2018). Atrophy in brain regions within 
the DMN such as the precuneus and the posterior cingulate gyrus are shown to be associated with 
episodic memory impairment (Doré et al., 2013) and decreased inferior frontal gyrus volume is asso-
ciated with verbal memory decline in MCI patients who converted to AD over time (Defrancesco 
et al., 2014).

Angular gyrus-seeded default mode network metabolic deterioration 
plays a key role in memory deficit in the asymptomatic and dementia 
stages of AD
While impaired glucose uptake in the ANG is consistently shown to be an important feature for 
predicting memory and executive functioning performance in the later stages of AD (Jeong et al., 
2017; Hammond et  al., 2020), our present findings provide further insights into the early critical 
role of ANG- based metabolic covariance network for intact memory (i.e. earlier peak of beta) in the 
preclinical AD stage. The ANG, located in the posterior part of the inferior parietal lobule, is one of 
the major connector hubs that links different subsystems such as the DMN (Greicius et al., 2004; 
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Tomasi and Volkow, 2011) that are affected by AD pathophysiology, and is involved in verbal working 
memory (Jonides et al., 1998; Seghier, 2013) and episodic memory retrieval (Ciaramelli et al., 2008). 
The role of ANG in memory performance is also implicated by its strong connectivity with the hippo-
campal system (Seghier, 2013) that is critical in episodic and declarative memory functions Tulving 
and Markowitsch, 1998. Furthermore, a recent study showed that Aβ aggregation within the brain’s 
DMN is associated with regional hypometabolism in distant but functionally connected brain regions, 
including the inferior parietal cortices where the ANG is located (Pascoal et al., 2019). Therefore, 
early malfunctioning of the ANG, as indicated by aberrant metabolic network patterns in our study, 
may predispose CN individuals with amyloid pathology to a more vulnerable memory system.

Interestingly, we observed that the relationship between ANG- based metabolic covariance network 
and memory performance gradually decreased in the late CN and MCI stages before increasing in 
the dementia stage. We postulate that this may represent a metabolic compensatory mechanism in 
the MCI stage as a manifestation of cognitive reserve to preserve memory function, which has been 
proposed in AD functional connectivity (FC) studies. Among amnestic MCI individuals, increased FC 
compared to controls was found within the DMN and between DMN and brain networks such as the 
frontoparietal control and dorsal attention networks. These abnormal increased FC patterns are asso-
ciated with lower cognitive performance which suggest a maladaptive compensatory mechanism in 
the MCI stage (Gardini et al., 2015; Liang et al., 2020). Similarly, higher nodal topological properties 
such as the nodal strength, nodal global efficiency and nodal local efficiency, and increased local and 
medium- range connectivity located in the DMN- related brain regions were also shown in the earlier 
subjective cognitive decline stage of AD relative to healthy controls (Chen et al., 2020). While these 
evidence supports our hypothesis of a metabolic compensatory mechanism in the late CN/MCI stage 
of AD, our findings will need to be confirmed in a larger cohort with longitudinal follow- up.

Modest influence of hippocampal structural network deterioration on 
memory impairment in individuals with non-amyloid pathology
The strength of the association between HIP structural network covariance and memory function 
was overall lower in non- AD groups compared to amyloid pathology group, which suggested that 
the hippocampal network integrity had a more modest influence on memory in individuals without 
Aβ pathology compared to those with Aβ pathology. In line with our finding, a recent study on 531 
deceased older community adults showed that neuropathologies such as AD, cerebrovascular disease 
and hippocampal sclerosis accounted for 42.6% of the variation in global cognitive decline, whereas 
hippocampal volume alone only accounted for an additional 5.4% of this variation (Dawe et  al., 
2020). Furthermore, we demonstrated a non- linear and opposing trajectory of this association as the 
cognitive stage progresses in non- AD groups compared to AD group. Although prior studies have 
consistently demonstrated that hippocampal atrophy is associated with memory deficits even before 
the presence of dementia and can predict dementia progression (Ferrarini et al., 2014), emerging 
evidence suggests that the relationship between hippocampal atrophy and memory is also depen-
dent on other factors such as age and cognitive reserve (Gorbach et al., 2017; Vuoksimaa et al., 
2013; Svenningsson et  al., 2019). Specifically, the association between episodic- memory decline 
and atrophy in the hippocampus over time was stronger in older than in the middle- aged participants 
(Gorbach et al., 2017). In middle age, hippocampal volume was related to memory in those with low 
cognitive reserve, but not in those with high cognitive reserve (Vuoksimaa et al., 2013). Excitingly, 
our findings shed new insights that the associations of memory decline with both hippocampal struc-
tural network integrity and years of education (i.e. a proxy for cognitive reserve) were also dependent 
on the presence/absence of amyloid pathology and the level of cognitive impairment.

Strengths and limitations
The main strength of the present study is the inclusion of individuals from the ADNI cohort with well 
characterised neuropsychological, multimodal neuroimaging, and AD biomarker data. This enables 
the study of the relationships between metabolic, structural brain networks, and memory perfor-
mance specifically in individuals within the AD continuum and those without amyloid pathology. 
Nevertheless, there are a few limitations in our study. First, the ADNI cohort consists of self- selected 
individuals participating in a study focusing on AD research, e.g., relatively more amyloid positive indi-
viduals, which may introduce selection bias and limit the generalisability of our findings to a broader 
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community. Second, our study design is cross- sectional thus provides only indirect evidence on the 
underlying brain- behaviour relationship. Therefore, a larger population- based longitudinal study is 
needed to characterise within- subject trajectories of brain- behaviour relationships across the disease 
continuum. Third, while we characterised the amyloid and tau status of our cohort using CSF amyloid 
and p- tau, we did not consider the spatial patterns of amyloid and tau brain deposition. Further 
studies are needed to elucidate the complex spatial and temporal trajectories of structural and meta-
bolic networks in the various non- amyloid tauopathies and how the presence of amyloid affects the 
tau- metabolism- memory associations across the disease continuum. Fourth, we estimated the indi-
vidual brain network scores based the group- level salience map derived from all the participants, 
which could potentially be sensitised to the relative imbalance of group sizes across diagnoses and/
or A/T categories. Nevertheless, we obtained similar findings when using group- level salience maps 
that were generated from CN individuals only, which indicated the robustness of our findings. Moving 
forward, a large independent cohort of CN individuals with minimum amyloid and tau pathology will 
be a better reference (Liu et al., 2021). Last, a multiplex graph- based approach can be applied to 
quantify differential network contributions to memory in the future studies (Canal- Garcia et al., 2022).

In conclusion, our findings support the AD hypothetical models that the association between 
neurodegeneration and memory dysfunction is non- linear across cognitive stages and depends on 
the type of pathology. The early influence of metabolic and structural covariance breakdown in the 
default mode and hippocampal networks on memory performance underscore the importance of 
early intervention in preclinical AD.

Materials and methods
Participants
Data used in this article were obtained from the ADNI database (https://adni.loni.usc.edu/). The ADNI 
was launched in 2003 as a public- private partnership, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, 
and clinical and neuropsychological assessment can be combined to measure the progression of MCI 
and early AD.

In this study, we first selected 812 participants to define seed regions for brain network derivation 
(Figure 1, step 1). All of the images passed the visual quality control. Among them, 232 were CN, 413 
were MCI, and 167 were probable AD. We then identified 708 participants (610 from ADNI- 2 and 98 
from ADNI- GO) from the above cohort who underwent neuropsychological assessments, and lumbar 
puncture in addition to [18 F]FDG PET and 3T T1- weighted MRI scans to form the main study cohort 
(Figure 1, steps 2 and 3). Among them, 195 were CN, 374 were MCI and 139 were probable AD 
(Table 1). A larger validation dataset was created for replication by including another 468 individuals 
(377 from ADNI- 1, 38 from ADNI- 2, and 53 from ADNI- GO) who underwent 1.5T T1- weighted MRI 
scan (refer as validation dataset 1). We also performed an additional validation analysis on the fully 
independent 468 participants (see Figure 1—figure supplement 1 flowchart at right; refer as valida-
tion dataset 2). Figure 1—figure supplement 1 showed the flowchart of study participant selection.

Following ADNI diagnostic criteria (Petersen et al., 2010), we defined CN as those with mini- 
mental state examination (MMSE) scores ≥24 and clinical dementia rating (CDR) 0, and showed no 
signs of depression, MCI, or dementia. MCI was defined as those with MMSE scores ≥24 and CDR 0.5, 
subjective and objective memory loss, absence of significant levels of impairment in other cognitive 
domains, essentially preserved activities of daily living, and an absence of dementia. Probable AD 
was defined as those with MMSE scores ≤26, CDR ≥0.5 and meeting the NINCDS/ADRDA criteria for 
probable AD.

Aβ (A) and tau (T) pathologies were measured using CSF Aβ1- 42 and CSF p- tau181p. More details 
were in Supplementary methods. Using the ADNI published cutoffs of Aβ1- 42<192 pg/mL and CSF 
p- tau181p >23 pg/mL to define the presence of Aβ and tau pathology, respectively (Shaw et al., 2009), 
the main study cohort was further stratified into three pathology groups: A- T- (non- amyloid/non- tau), 
A- T+ (tau only) and A+T-/A+T + (amyloid pathology; Table 1). There was no significant difference in 
age, gender, years of education, and APOE ε4 status among CN, MCI, and probable AD individuals in 
the A- T- and A- T +groups (Table 1). The proportion of APOE ε4 carriers was lower in CN compared to 
MCI and dementia individuals in the A+T-/A+T + group.

https://doi.org/10.7554/eLife.77745
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The ADNI study was approved by the Institutional Review Boards of all of the participating institu-
tions and informed written consent was obtained from all participants at each site.

Neuropsychological assessment
The ADNI- mem is a validated composite memory score derived using data from the ADNI neuropsy-
chological battery (Crane et al., 2012). More details were in Supplementary methods.

Image acquisition and preprocessing
All participants from the main dataset underwent T1- weighted MRI scans according to the stan-
dardised ADNI protocol using 3- Tesla scanners. Additional participants who underwent structural MRI 
brain scans using 1.5- Tesla scanners were included for validation of the findings. All participants also 
underwent [18F]FDG PET to study cerebral glucose metabolism (185 MBq (5 mCi), dynamic 3D scan of 
six 5 min frames 30–60 min postinjection).

All T1- weighted MRI scans were corrected for field distortions and processed using the CIVET 
image processing pipeline (https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) to generate the 
GM probability maps as previously described (Kang et al., 2021). [18F]FDG PET images were processed 
with an in- house processing pipeline as described in our previous work (Nilson et al., 2017). Further 
details on image parameters and preprocessing were in Supplementary methods.

Statistical analyses
Between- group differences in demographic characteristics and clinical assessments were tested 
among CN, MCI, and probable AD groups. Either a one- way ANOVA or a chi- squared test was used 
depending on the nature of the variable.

Seed definition: group comparison on GMV and glucose metabolic 
pattern between CN and probable AD
As shown in Figure 1 (step 1), the 12 seed coordinates from the DMN, the SN, the ECN and the 
memory network were determined based on the group comparisons of the GMV probability and 
glucose metabolic spatial maps between CN and probable AD individuals using a permutation test 
(randomise, FSL, 5000 permutations). Effects of age, gender, years of education, and APOE ε4 geno-
type were regressed out. The field strength (i.e. 1.5T or 3T) was included as an additional covariate 
when the tests were performed using the validation dataset 1 (Supplementary file 1). The resulting 
GMV and metabolic group difference maps (i.e. CN greater than probable AD) were thresholded using 
threshold- free cluster enhancement with an alpha level of 0.05 (corrected at family- wise error [FWE] 
rate). We superimposed the two thresholded t statistical maps (GMV and metabolic) and summed the 
t- scores at each voxel. Spherical seeds (with 4 mm radius) were then defined based on the peak foci 
of the above network key regions showing atrophy and hypometabolism in probable AD compared 
to CN (Supplementary file 4).

Brain metabolic and structural network derivation: seed PLS analyses
We used seed PLS to identify covariance patterns between GMV/metabolism in each seed region 
and those of all other voxels in the whole brain (Figure 1, step 2). The seed value was defined as the 
average GMV/metabolism values within each predefined seed from step 1. For each seed region, the 
vector Y representing the seed values concatenated across all the participants was cross- correlated 
with a matrix X, representing the vectorised whole- brain GMV (or metabolism) images of all the 
participants. Both the seed vector Y and the image matrix X were centered and normalised such that 
the vector of correlations R was computed as:

 R = YT · X  

Using singular value decomposition, the correlation vector R was decomposed into a set of mutu-
ally orthogonal latent variables (LVs) comprising three matrices:

 R = v · s · uT  

https://doi.org/10.7554/eLife.77745
https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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where s is the diagonal matrix of singular values, and v and u are the orthonormal matrices of 
left and right singular vectors, which are also called saliences in the PLS terminology. The left and 
right singular vectors respectively represent the seed profiles and the whole- brain patterns that best 
characterise the correlation vector R. Therefore, the brain salience u captures the brain covariance or 
network pattern that is of interest. The number of LVs derived is equal to the rank of the correlations 
vector R. The LVs were tested for statistical significance with 1000 permutations. The stability of each 
voxel in the brain salience of the LV was validated using a bootstrap ratio, calculated by dividing the 
voxel salience value by its standard error, estimated by bootstrapping (500 times).

The resulting significant LV from the PLS analyses of each of the 12 seeds (all p<0.0001) corre-
sponded to reliable patterns of structural or metabolic covariance network associated with that seed 
(see Figure 2A, Figure 3A, Figure 2—figure supplement 1A and Figure 3—figure supplement 1A).

To represent individual- level brain salience maps of the identified LV for each seed PLS model, the 
original matrix X was projected onto the brain salience u (representing the network map), which was 
computed by:

 LX = X · u  

where LX is a vector of brain structural or metabolic network scores across all the participants.
We calculated the brain network score for each of the 12 networks in both FDG and GMV modal-

ities separately. For HIP, ANG, INS, PPC, and DLPFC, we averaged the left and right brain network 
scores. In total, each participant had 14 brain network scores (i.e. two for each of the 7 seed regions, 
including HIP, ANG, PCC, mPFC, INS, PPC, and DLPFC), which reflect structural or metabolic network 
pattern expression.

Stage- and pathology-dependent associations between brain networks 
and memory impairment: SVC modelling
With ADNI- mem as the dependent variable, the SVC models have the following form:
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)
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where  λ  is the sparse penalty tuning parameter, which was chosen by a fivefold cross- validation 
method.

We ran each SVC model for 100 repetitions and reported the brain measures that were consistently 
selected by more than 90 repetitions. These measures were interpreted as a set of critical brain GMV/
metabolism networks that contributed to memory across the cognitive stages, with a vector of beta 
coefficients reflecting stage- dependent (non)linearity in the network- memory association.

To assess the stability of these beta coefficients, we calculated the mean and standard error of 
the stage/pathology- dependent coefficients estimated from all 100 repetitions. Moreover, to assess 
the specificity of the selected networks, we randomly permuted the memory scores 100 times across 
the participants and repeated the SVC modelling 100 times within each of the 100 permuted data 
sets, following our previous approach (Hong et  al., 2015). These ‘null’ permutations should yield 

https://doi.org/10.7554/eLife.77745
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inconsistent selection of predictors, if any, as compared to our actual models. SVC modelling was 
performed by in- house R scripts based on Daye and colleagues (Daye et al., 2012).

To further confirm that our findings were robust, we repeated the analyses with another ordering 
strategy which did not divide MCI and probable AD into two separate groups (i.e. CDR- SOB and age 
ordering were done across all individuals with either MCI or probable AD diagnosis) in each pathology 
group (Figure 1—figure supplement 2B).

To compare the brain metabolic and structural network scores between different cognitive stages 
and differenct pathology groups (Figure  1, step 3), we performed separate non- parametric one- 
way ANOVA analyses (5000 permutations, alpha = 0.05) to test whether there was group differences 
across cognitive stages and across different pathology groups for each network, followed by posthoc 
non- parametric two- sample t- tests (5000 permutations, alpha = 0.05). We performed Bonferroni- 
Holm correction for the three pair’s t- tests (adjusted alpha = 0.05). The nuisance variables including 
age, gender, education years, APOE ε4, ICV, and scan site were regressed out from the network scores 
before non- parametric ANOVA.
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Appendix 1
Supplementary methods
CSF analysis
CSF AD biomarkers of Aβ1- 42 and CSF p- tau181p were measured using the Luminex multiplex 
platform (Luminex, Austin, TX, USA) and Innogenetics INNO- BIA AlzBio3 (Innogenetics, Ghent, 
Belgium) immunoassay reagents. The details of the ADNI methods for the acquisition and 
measurement of CSF can be found at https://adni.loni.usc.edu/.

 

Neuropsychological assessment
The ADNI- mem is a validated composite memory score derived using data from the ADNI 
neuropsychological battery (Crane et  al., 2012). A modern psychometric approach was used to 
analyse the Rey Auditory Verbal Learning Test, AD assessment schedule- cognition (ADAS- cog), 
MMSE, and Logical Memory tests to obtain a composite memory score. In ADNI- mem composite 
scores, lower scores reflect poorer memory performance. The details of the ADNI protocols for the 
neuropsychological assessments and the methods for developing the ADNI- mem can be found at 
https://adni.loni.usc.edu/.

Image acquisition and preprocessing
All participants from the main dataset underwent T1- weighted MRI scans according to the 
standardised ADNI protocol using 3- Tesla GE, Philips, and Siemens MRI scanners with a sagittal 
volumetric magnetisation- prepare rapid- acquisition gradient echo (MPRAGE) sequence (TR = 
2300ms, TE = minimum full, approximate TI = 900ms, Slice Thickness = 1.2, flip- angle=9°) or T1- 
weighted accelerated sagittal inversion- recovery spoiled gradient- recalled (SPGR) sequence (TR = 
400ms, TE = minimum full, flip- angle=11°, slice thickness = 1.2 mm and FOV = 26 cm). Additional 
participants who underwent structural MRI brain scans using 1.5- tesla GE, Philips, and Siemens 
MRI scanners were included for validation analyses. For these participants, T1- weighted MRI scans 
were acquired using an MPRAGE sequence with TR = 2400ms, minimum full TE, TI = 1000ms, Slice 
thickness = 1.2, and flip angle of 8° (scan parameters vary between sites, scanner platforms, and 
software versions).

All participants also underwent [18F]FDG PET to study cerebral glucose metabolism (185 MBq [5 
mCi], dynamic 3D scan of six 5 min frames 30–60 min postinjection). Further details on MRI and PET 
acquisition parameters can be found at the ADNI website http://adni.loni.usc.edu/methods.

Voxel-based morphometry
All T1- weighted MRI scans were corrected for field distortions and processed using the CIVET 
image processing pipeline (https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The MRI images 
underwent non- uniformity correction, brain masking and segmentation, and normalisation to the 
Montreal Neurological Institute (MNI) space with affine and non- linear transformation. An in- house 
processing pipeline based on MINC toolkits was then applied to generate voxel- based morphometry 
(VBM) images based on the CIVET outputs as previously described (Kang et al., 2021). In brief, a 
log Jacobian determinant was derived based on the non- linear vector field from the CIVET outputs, 
followed by transformation into a scalar, modulated with grey matter probability mask. The GM 
probability maps were then smoothed with an 8 mm Full- Width at Half- Maximum (FWHM) Gaussian 
kernel.

[18F]FDG PET processing
[18F]FDG PET images were processed with an in- house processing pipeline as described in our 
previous work (Ng et al., 2017). The preprocessed images from the ADNI database were smoothed 
with an 8  mm FWHM Gaussian kernel, followed by linear co- registration and non- linear spatial 
normalisation to the MNI 152 standardised space with the use of transformation matrices derived 
from the PET native to MRI native space and the MRI native to the MNI 152 space. The voxel- wise 
brain glucose metabolism standardised uptake value ratio (SUVR) maps were then generated with 
the pons as the reference region.

https://doi.org/10.7554/eLife.77745
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
http://adni.loni.usc.edu/methods
https://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET
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